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Abstract 

We investigate a large N matrix model involving general complex matrices. It can 
be reinterpreted as a model of two hermitian matrices with specific couplings, and 

as a model of positive definite hermitian matrices. Large N perturbation theory 
generates dynamical triangulations in which the triangles can be chequered (i.e. 

coloured so that neighbours are opposite colours). On a sphere there is a simple 
relation between such triangulations and those generated by the single hermitian 

matrix model. For the torus (and a quartic potential) we solve the counting problem 
for the number of triangulations that cannot be chequered. The critical physics of 

chequered triangulations is the same as that of the hermitian matrix model. We 
show this explicitly by solving non-perturbatively pure 2 dimensional “chequered” 

gravity. The interpretative framework given here applies to a number of other 
generalisations of the hermitian matrix model. 
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1. Introduction 

Recent progress in understanding the partition function for non-perturbative 

(oriented) string theory in one dimension or less [I] -[3] has generated considerable 

interest in matrix models. These authors used N x N hermitian matrices H 

as the dynamical variables and an action whose potential is just a trace over 

some polynomial of H: The perturbation expansion for such a model sums over 

triangulations of arbritrary genus two dimensional surfaces. The triangulation can 

be seen directly by forming the dual diagram to the Feynman diagram using ‘t 

Hooft’s large N counting rules to define loops (faces) in the Feynman diagram[4]. 

(Actually polygonations would be a better word since in general not just 3-sided 

polygons are used. Since we will wish to distinguish between triangles and polygons 

we will henceforth use this term.) 

There is no reason why one cannot use other forms of matrices provided that 

they also have a natural interpretation in terms of triangulations. For example 

symmetric real matrices are readily interpreted as triangulating non-orientable 

surfaces.[5] Here we show that complex matrices (with no hermitian constraint) 

also have a natural interpretation. They can be understood as summing over 

chequered triangulations of orientable surfaces. Chequered triangulations, rather 

polygonations, are polygonations where the triangles’ are chequered, that is to say 

where the triangles are coloured black and white in such a way that neighbouring 

triangles are always opposite colours (as in fig.2). This is a rest,ricted set of 

polygonations because not all polygonations can be chequered. For example only 

even sided polygons can be used since odd sided polygons cannot be chequered. 

However some even sided polygonations cannot be chequered either; the simplest 

polygonation of the torus which is a square with opposite sides identified cannot be 

chequered (fig.3). 

Our original motivation for looking at complex matrices as a method for 

describing non-perturbative strings is that such a formulation has some advantages 

over hermitian matrix models in dealing with aspects of non-perturbative strings in 

r The polygons are divided into triangles in the obvious way, see fig. 1. 
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one dimension and greater. That however is another story which will have to await 

a future publication. Here we study the model in its own right. 

In section 2 we formulate the model and demonstrate its interpretation in terms 

of chequered surfaces. We prove geometrically that all even sided polygonations of 

a sphere can be chequered. This leads to a simple relation between the counting 

problem for the number of polygonations (or its dual which are planar closed 

graphs[6] [7]) and the number of chequered polygonations on the sphere and hence 

to a simple relation between the two models for the partition function of the sphere. 

Indeed, provided that the hermitian matrix model potential is even, a simple scaling 

of the couplings relates the two partition functions. We also point out that the model 

may be interpreted as a model of two hermitian matrices with specific couplings. 

In section 3 we analyze the model analytically. By integrating out certain 

angular modes we reduce the problem to one of orthogonal polynomials defined 

on the positive real line. We note here that a model of hermitian positive definite 

matrices is precisely equivalent to this complex matrix model. We derive recurrence 

relations for the coefficients in these polynomials. Solving for these coefficients using 

perturbation theory in l/N allows us to derive (away from criticality) a number 

of relations. In particular we derive the same relation as proved geometrically 

for the sphere. We also solve the counting problem for the number of chequered 

quadrilations of the torus. By borrowing the hermitian matrix results[6] one can 

derive an expression that solves the counting problem for the number quadrilations 

of the torus that cannot be chequered. 

In section 4 we take the continuum limit by tuning to a critical point. The 

equivalence of the partition function for hermitian and complex matrix models on 

the sphere implies identical critical behaviour for the sphere. Since the chequered 

polygonations only differ from those generated by hermitian matrix models by short 

distance details, the continuum physics we expect is the same to all orders in the 

genus. We confirm this explicitly by solving the model in the double scaling limit, 

deriving differential equations for the string susceptibility, for the simplest case of 

chequered quadrilations and showing that it gives pure 2D gravity (index k = 2) 

as in refs.[l], up to a resealing of the string coupling. This also allows a number 

of non-trivial checks on the analysis of the preceding section. We also note the 
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existence of another critical point in Ihe torus contribution, suggesting a continuum 

limit with index k = 1, which does not necessarily have an interpretation in terms 

of chequered triangulations. 

In section 5 we summa&e and draw our conclusions. In particular we note 

that the interpretative framework we have developed here may readily be applied 

to matrix models where the matrices are arbritrary real, or arbritrary quaternionic, 

even when the matrices are not square: Thus the triangulations again only differ 

by short distance details and the models will be in the universality class of real 

symmetric or quaternion real self-dual matrices[5] giving non-orientable surfaces, 

or (for non-square complex matrices) give physics in the same universality class as 

hermitian models. 

2. Chequered Polygonations and The Model. 

Define the following partition function: 

Z(7,sp) = l/~o Jwfl exP{-N/7 U(M+M)) (2-l) 

where M is a complex N x N matrix with elements Map, [dM] stands for 

5 
dM,pd=,p > 

U(M+M) = U(MM+) is a polynomial of the form 

U(M+M) = tr{yM+M + c g,(M+M)P} 
P>2 

(2.2) 

(2.3) 

and 7,gp are arbritrary parameters. 20 is a normalisation constant adjusted so that 

2 = 1 when gz, g3, . = 0. The form of U as a function of M and M+ is fixed by 

the requirement that it be polynomial and that (2.1) have the invariance: 

M-i V+MW (2.4) 

where V and W are any unitary matrices. We will use this invariance to solve the 

model, in sect. 3. (The reader will note that we have over-parameter&d. This will 
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be convenient later. In the usual fashion the parameters are restricted to ensure 

that (2.1) is well-defined but, in the triangulation interpretation to ensure that all 

terms in the perturbation series are positive and to reach the critical point, may be 

analytically continued). 

We can reformulate (2.1) as an integral over two hermitian matrices HI, Hz by 

writing 

M=X1 +iHz 

to give 

2 = l/Z0 /[dH,][dHz] ewN17 ’ 

where 

[dH] = fl d&a n d&d~,p 
L1 ol<P 

and the action now appears as 

(2.5) 

Viewing this formulation one might expect that such a model can access physics 

related to that of two hermitian matrices[2] (although the action used to obtain 

the Ising model is very different). However it is not possible to tune the relative 

couplings between HI and Hz at each order separately from their self couplings, 

because these are fixed by the invariance (X4), and such a tuning would be necessary 

in general to access all critical points. In any case it is shown later in the paper and 

in ref.[g] that the physics described by this model is that of one hermitian matrix. 

To obtain the interpretation in terms of polygonations we use perturbation 

theory about gz,ga, . . = 0. The first term in (2.3) acts as an inverse propagator 

giving 

P-C&$) = UN &vL~ (233) 

Using large N diagrammatics[4][6] we represent this as a double line, and with an 

arrow pointing towards the Mt ( see fig.4). The vertices are adorned with arrows 

in a similar manner. As an illustration we list the diagrams to second order in 

the quartic (92) interaction in fig.5. In the standard fashion the closed lines count 
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a factor of N and identify loops which are dual to vertices in the polygon&ion. 

The vertices each carry a factor of N/y and are dual to faces (poIygons) in the 

polygon&ion. The propagators carry the factor of l/N shown above, and are dual 

to edges in the polygon&ion. Let E be the number of edges, F the number of 

faces, and V the number of vertices in the polygonation. Then the Euler number 

x = F + V - E and it follows that each polygonation is accompanied by a factor 

(2.7) 

Thus, as in refs.[l]-[7], the power of N counts genus and is the inverse bare string 

coupling; In 7 multiplies the area (equal to the number of polygons) and is the bare 

cosmological constant. One can also count the number of quadrilaterals, hexagons, 

etc. by counting powers of gz,ga, * . respectively. To chequer the surface, shade 

the triangles in the polygon if their outer edge is dual to a propagator with an 

incoming arrow, otherwise leave them white: see fig.6. In other words the triangles 

are directly associated with the matrices: black for Mt, white for M. The chequered 

property of the polygon&ions immediately follows from the structure of the vertices 

and the fact that the propagator only connects M’s with Mt’s. 

As a final example, using fig.6, one can see that fig.5(i) corresponds to a 

chequered sphere made by folding a square along a diagonal and gluing the sides, 

whereas fig.5(ii) uses two squares to form a chequered ravioli. 

It is thus clear that if it were not for the restriction of chequering (arrows), 

the counting of polygon&ions (closed graphs) would be precisely the same as for 

hermitian matrix models(61. Indeed computing the diagrams in fig.5 ‘we find 

(i) 2(-g)N2 (ii) gZN2 

(iii) 4gaNZ (iv) 4g2N2 (v) gZNo 
w4 

where we have introduced g = gz/7 so that it can be compared directly with fig.8 

of Bessis et al[6]. Recall that the coefficient (ignoring the sign) of the g”Nx term 

multiplied by m! is the number of ways of making a closed surface with Euler number 

x from m elements: squares for fig.8 ref.[6], chequered squares for us. The result of 

(i) is the same in both cases because the number of ways of folding a square along a 

diagonal is the same whether or not it is chequered, and the result of (ii) is half that 
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of Bessis et al because half of the orientations of the two squares correctly chequer 

the ravioli and half do not. 

These observations immediately generalise. One sees that for any chequered 

polygonation using n polygons, there are just two correctly chequered surfaces (the 

original and its photographic negative) out of the total 2” ways of chequering the 

individual polygons. We will shortly prove that on a sphere all polygon&ions can 

be chequered, provided only that the polygons be even sided. It follows that a 

simple relation exists between the N2 contribution for this model and that of the 

hermitian model with an even potential: the coefficient of the 7-” term here is just 

2(1/2)” times that of the corresponding hermitian contribution. Thus by resealing 

N and y we obtain precisely the same contribution off criticality for the two models 

at the spherical level. We will rederive these results analytically in the next section. 

Here it only remains for us to show geometrically that all even sided polygonations 

of a sphere can be chequered. 

In an even sided polygonation of the sphere, a vertex of an individual triangle 

is either at the centre of a polygon (as in fig.l), in which case the vertex is shared by 

an even number of triangles, or else at a vertex of a polygon. But this latter vertex 

is shared with triangles from other polygons (see fig.2) and each polygon contributes 

two triangles. Thus aJ1 vertices are shared by an even number of triangles. 

Now colour the sphere by starting at some triangle and colouring outwards, 

chequering triangles with common edges consistently, and colouring all the triangles 

one can this way until either the sphere is completely chequered or one is left with a 

mass of chequered triangles connected through their edges, and some obstructions. 

We will proceed by showing that on a sphere there cannot be such obstructions since 

if there were they must break the mass of chequered triangles into disconnected 

pieces, violating our just stated colouring procedure. 

Clearly such obstructions will be of the form of triangles with one side bordered 

by a triangle already coloured black and another side bordered by a triangle already 

coloured white. Let us mark such triangles with crosses as in fig.7. The other 

triangles (apart from the dotted one) have not been drawn, however we know from 

above that there are an odd number of undrawn triangles sharing the vertex a. But 

an odd number of further triangles meeting at a cannot be correctly chequered to 
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match the two coloured triangles in the figure. It follows that there must be at least 

one other crossed triangle meeting at a. Similarly we show that there is at least one 

other crossed triangle meeting at the bottom (possibly the dotted triangle), since 

otherwise moving anticlockwise around vertex b from the black we deduce that the 

dotted triangle is black, while moving clockwise from the white at c we deduce that 

the dotted triangle is white. 

Now we have a situation in which every crossed triangle must be connected 

by its edges to at least two coloured triangles and at least joined to two crossed 

triangles at its vertices. The presence of the coloured triangles on their borders 

prevents the crossed triangles from forming a connected mass, so the only way they 

can satisfy these rules is by forming closed loops. But since a sphere is simply 

connected, this would separate the coloured mass into disconnected pieces q . 

3. The Sphere and The Torus. 

In this section we will derive the previous result analytically as well as others. 

Following Itzykson and Zuber[S] we note that the essential trick is to be able to 

integrate out order N ’ “angular” variables to be left with a much smaller set of 

invariants (N in fact) still to be integrated over. We can do this by using our 

invariance (2.4). It is a well known fact that one can always bring a complex matrix 

to diagonal form with such a transformation. By appropriate choice of phases we 

can arrange that the diagonal elements, which we write as 6 Q = 1,. . . , N, are 

real and positive. We give a simple proof of these statements in the appendix. 

Note that it follows that the y’s arc the eigenvalues of d&M, which are also the 

eigenvalues of MMt Thus change variables to 

M=VfiWt (3.1) 

(where &is the diagonal matrix with entries 6). The measure changes to 

[dM] = Py [dV][dW] AZ(y) (3.4 

up to a numerical constant which does not concern us since it is cancelled by Zo (in 
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(2.1)). Here we have introduced the Vandermonde determinant 

A(Y) = n (~a - YP) . a-3 
[dV] and [dW] are the Haar measures for the U(N) integrals. Equation (3.2) is 

derived in the appendix. 

At this stage it is appropriate to make some comments on the book by 

Mehta[lO]. In it, Mehta gives an analysis of integration over a general complex 

matrix. However his interest in the statistics of eigenvalues (guided by applications 

to random hamiltonian models of nuclei) led him to consider a change of variables 

to the eigenvalues of the complex matrix (and a similarity transformation). These 

eigenvalues are not related to the ya of course because in general V and W are 

unrelated (in (3.1)). It turns out that even the analysis with just a tr(MtM) action 

is quite involved and it would not appear to genera&se to our case (2.3). In any 

case this parameterization is not as convenient for our purposes as the one we use. 

Substituting (3.1) and (3.2) into (2.1) one can trivially integrate over the 

angular vanables to obtain 

Z(-r,g,) = l/-G /,- dNy A*(Y) exd-N/y U(Y)) (3.3) 

The integration region is restricted to y= E (0, co) as indicated. 

Precisely the same integral is obtained from hermitian matrix models[6][7] ex- 

cept for this restriction. But this restriction is trivially incorporated by integrating 

only over positive definite hermitian matrices. Thus this model may also be viewed 

as a matrix model of positive definite hermitian matrices H with action (from (2.3)): 

U(H) = tr{yH + c gpIP} 
PB 

Following the methods of ref. [6], we introduce for a single real variable y 

dp(y) = dy e-N/Y ‘(Y) (3.5) 

where now U(Y) = YY + c gpyp PB 
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and define orthogonal polynomials by 

P,(y) = y” + lower powers n=1,2,... 

J 
om +(y)Pn(y)Pm(y) = L&n . 

Since there is no y + -y symmetry[l] we also need to define 

(3.6) 

/ 0 O5 44yP.f (y)y = AA , (3.7) 

then following ref.[6] one shows that 

YPn(Y) = pn+l(Y) + &P?l(Y) + RaPn-l(Y) (3.3) 

where R, = h,/h,-1. Z is given by 

Z-e -N’E 

E = -l/N In ho - l/N= -&N - k) In Rt 
k=l 

(3.9) 

where E is the vacuum energy. From (2.1) th e numerical constant 2s simply serves 

to ensure that E(gZ,gs,. .. = 0) = 0. With this in mind we will ignore additive 

numerical constant contributions to E henceforth and adjust the zero accordingly. 

Now we need two recurrence relations for R, and A,. Following Gross and 

Migdal[l], it is helpful to introduce bra-ket notation with normalised basis In >= 

P,,lJil;; , and operators S and iL such that 

then 

stjn > = In + 1 > 

S]n > = In - 1 > 
(3.10) 

SIO > = 0 

y=JRi,St+SJRi,+Ai, (3.11) 

From the definition (3.6) it follows that dP,/dy = nP,-I+ lower powers. Thus 

n =< nlyd/dy/n > and integrating by parts we get our first relation: 

< nlyU’(y)ln >= $(2n + 1) (3.12) 
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where U’ is dU/dy. 

Given the restriction of y to the positive real line, and viewing the problem 

formally[ll], one might be tempted to consider only a differential operator of the 

form yd/dy since this is the operator that is essentially self-adjoint on IR+ and 

takes the place of the conjugate momentum in such situations[lZ]. However the 

only other relation that can be obtained this way is as follows: Writing equation 

(3.8) as P,+l = (y - A,)P, - R,P,-, and iterating, one obtains 

P “+I =y +’ - yn 2 A,, + lower powers 
k=0 

thus 

and by parts 

n 

Lk~oA~ =<nJy++l > 
& 

=N/y JR,+I<n+llyU’(y)ln> 

This equation, being non-local, is of no use. (Apart from the inherent difficulty in 

using it, it must be localizable near the “Fermi level” N in order to scale correctly 

in the continuum limit). Taking finite differences by subtracting the same equation 

with n -+ n - 1 gives an equation that can be used for the all orders calculation 

(sect. 4) but yields only the differential of the string equation. To do better one 

has to involve the y = 0 boundary, thus considering < nld/dyln > one obtains 

g-P:(o) =< nlU’(y)ln > n 
and considering < n - 1 Id/dyln > one obtains 

7 
P,(O)P,-l(O) =< nlU’(y)ln - 1 > - ny 

N$XL NVK’ 

Combining these two equations yields our second equation: 

( 

a 
< nlU’(y)ln >< n - lIU’(y)ln - 1 >= < niU’(y)ln - 1 > - ny 

NJRT; ) 
(3.13) 

As an example, keeping only the 91 interaction, one obtains from eqns. (3.12) 

and (3.13) respectively: 

2n+l 
- = %(%+, + R, + A:) + A, 

(n/N - &’ = R,(l + 2gA,)(l+ 2gA,-1) 
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where as in (2.8), g = gz/y. It is easy to see that these equations determine all the 

A, and R, recursively cmce A0 is known. Ro is consistently taken to be zero as 

follows from eqns (3.10) and (3.11). Ao follows from eqns. (3.6) and (3.7): 

ho = 
J 

- dy .-N(Y + 9Yz) 
0 

= l/N g (2m - l)!! (-2g/N)” (3.15) 
m=Ll 

A,,h,, = 
J -&ye -N(Y + 92) 

cl 

= l/N* 5 (2m + l)!! (-29/N)‘” (3.16) 
m=O 

In fact the structure of the equations are such that they are readily solved 

perturbatively (in g) and no boundary conditions are needed for this[6]: 

R, = (n/N)* - 12g(n/N)3 + 20gZ/N4(9n4 + n*) + . . . 

2n+l 
A,, = - 

N 
- 4g/N2(3n2 + 3n + 1) + 8g2/NS(18n3 + 27n* + 19n + 5) + . . . 

(3.17) 

As an intermediate check on consistency, substituting the above and (3.15) into eqn. 

(3.9) one obtains to order 9’: 

E = 2g/NZ - 10g2/N3 + l/N= &N - k)(l2gk/N - 108g2k2/N2 - 20g2/N2) 
L=l 

= 2g - 9gz -9=/N’ 
(3.18) 

in agreement with (2.8). 

In preparation for the limit N --t cc it is helpful now to define z = n/N and 

c = l/N. We write In >= 12 > (the state is still normalised to l), T E T(Z) = R, and 

a E a(z) = A, (to be understood as operators when between bra-kets). Define 

n(z) =< n]U’(y)ln > 

=< zlU’(Sf + ST + a)]z > , (3.19) 

6(z) = n-//N - 6 < n - l/U’(y)ln > 

= yz- < zjstuyst + ST + a)l+ > (3.20) 
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where use has been made of the identity 

y& = &[Sf + ST(S) + a(S)] 

Now equations (3.12) and (3.13) can be succinctly written: 

i=i(z) + ii(z+e) = a(z)cqz) (3.21) 

T(z)n(z)n(z-e) = S(z) (3.22) 

Following ref.[6] we note that these equations define T and a as a power series in c: 

T Es T.(Z) = p,(z,,~ (3.23) 

and similarly a. To zeroth order in e, the spherical contribution, we deduce 

immediately from (3.21) and (3.22): 

4ro = a; . (3.24) 

At this order S commutes with a, thus substituting this into eqn. (3.11) and using 

(3.12), one obtains 

v = zu(%) (3.25) 

where W(U) = l/2 < rl(a/2(S + 5-t]+ a)U’(a/2[S 4 St] + a)12 > 

Remembering that U is the polynomial U = CPzl gPyP (gl = 7) we have 

w(a) = l/2 c pgp < zI(a/Z[S + St] + a)Plr > 
P>l 

= l/2 c pg,aP(z) i2* $(1+ cosB)P 
P21 

= l/2 c 9Pwpp!:p2p);)! 9 
P21 

or rearranging slightly 

w(a)/7 = 42 + l/2 c 9p/7p,:a2P);)p/2)p~ 
PZ 

12 
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The intermediate expression arises by noting that the coefficient of So (St = S-i) 

is obtained by the substitution S = eie and averaging over 6. Equations (3.25) and 

(3.27) serve to determine as in terms of E. For the simplest case where only g = g2/y 

is non-zero we have 

w(ao)/r = 42 + 3ga;/2 = z . (3.28) 

From eqns. (3.9) and (3.24) we have to zeroth order: 

Ea=-2 
J 

’ 
0 

dz(1 - r)ln(as/2z). (3.29) 

The subscript 0 is to indicate the spherical contribution. The 20 in the log adds a 

numerical constant and is required to normalise the vacuum energy (cf. comments 

below eqn.(3.9)) as follows from eqn. (3.17). Equations (3.25), (3.27) and (3.29) 

define the spherical contribution and can be compared directly with the classic 

paper of Bessis et &1.[6]. Indeed starting from an action for the Hermitian matrix 

H (eqn. (4.1) of ref.[6] up to a fi resealing of the matrix, and g -+ g/r): 

Action = N{ i If* + c gp/yH2P} 
P>* 

one obtains the spherical contribution to the vacuum energy 

eo(splr) = - l1 d+(l - z)l=($(z)/z) 

where T,” is determined from the equation UJ”($) = zr and 

UP(T) = T + c gp/y (2p)! 
P&J 

p!(p - l)! Tp . 

(We used equations (5.5-7) of ref.[6]. Note that the relative factor of l/2 in the 

actions quadratic term is necessary for equality of propagators). 

Comparing with equations (3.25) and (3.27) respectively we see that w/-y is to 

be identified with wB, as/2 is to be identified with r,” and the couplings gp p 2 2 

must be scaled by a factor of 2. Finally comparison with equation (3.29) implies: 

Wd~) = 2ec@, 
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This is the statement we derived geometrically in the previous section. It implies, up 

to some simple resealings, complete equivalence even off criticality of the spherical 

contribution to the vacuum partition function for the two models. 

Using our identifications above and lifting two further formulae from ref.[6] we 

deduce for the simplest case where only g = 921-y is non-zero: 

+&(A-2)(18-A) 

= -2 c(-6g)p;yp;;;, 
p=l 

(3.30) 

= 2g - 9g* + 7293 - . . . 

in agreement with eqn. (3.18). H ere A is the solution for as of eqn.(3.28) at I = 1 

that matches on to perturbation theory (identified as A g 2a* in ref.[6]): 

A= 
-1+4- 

69 ’ 
(3.31) 

For this simplest case, we now derive the off-critical contribution from the 

torus. As a generating function, it solves the counting problem for the number of 

chequered quadrilations of the torus, as does the above for the sphere. It also allows 

us to find out (for this case) whether the critical point(s) for the torus are just those 

deduced from the sphere. 

Taylor expanding eqns. (3.14) to order E, using eqn. (3.23) and the material 

before eqn. (3.19) and eqns. (3.24) and (3.28) one finds eqns. for ~1 and al: 

1 = 4971 + 2gr; f 4gaoa1 + a1 

2gwz; = (1+ 4gao)r, + 4groai 

which when solved yield 

1 

a’ = 1 + 6gao 

Expanding equation (3.14) to order e* and using the above, one similarly obtains a 

pair of linear equations for a2 and ~2 which when solved give 

~2 = g*a;/A{5 + 30gae + 48g*a;} 

az = -4g/A(g*a2,(1+ Quo) + (1 + 2gao)(l + 3gao)(l+ 4gao)J 

where A = (I+ 2gao)*(l+ 6gao)4 
(3.33) 
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The above equations may be readily expanded for small g and agree with the 

expansion (3.17). Expanding eqnJ3.9) as 

E= 5 N-*gE, (3.34) 
g=0 

and using the Euler-Maclaurin formula in the form 

E=- I 0 
‘dr(l - z) 1 n?.(z) - l/N{lnho - 1/2lnr.(O)} - 

+ &[(I - ~)hr,(~)]“‘I~ +O([(l - z)lnr,(z)](‘)/N’) 

we obtain 

El = - d+(l -~)Tz/Q +2g+1/12{lnro -(I -z)T~/T~}~~ 

Here (cf. eqn.(3.29)) we have not been so careful to subtract divergent numerical 

constants arising at + = 0: It is easy to take them into account at this stage. 

Expanding the solution a0 of eqQ3.28) f or small z gives a0 = 2z- 12g+* + . in 

accord with the perturbative result (3.17), thus 

In t-0 = In I + O(z) 

7; /TO = 
4 

ao(l + Ggao) 

=2/x - 1 - 129 + O(5) 

Using these results, the above result for ~2, and changing variables from I to a0 one 

obtains 

E1=1/6lnA+g-g* 
J 

Ada (2 - a - 3gaq5 + 30ga + 48g*a*) 

0 (I+ 6ga)3(1 + 2ga)* 

= &ln 
(4 - A)(4 + A)3 

432 

As indicated below eqn.(3.9) we have subtracted numerical constants appropriately 

in eqn. (3.36). The first term in the expansion of El agrees with the l/N* term in 

eqn.(3.18). El is the generating function for the number of chequered quadrilations 

15 



of the torus: the coefficient (ignoring the sign) of the g” term in (3.36) multiplied 

by n! is the number of ways of making a correctly chequered torus from n chequered 

squares. In view of our geometrical discussion in the previous section we know that 

letting g -+ 2g and dividing the torus result (3.36) by 2 gives the generating function 

for the number of quadrilations of a torus that can (in principle) be chequered: 

that is the number of ways of building torii out of n (colourless) squares, without 

regard to their relative orientations but such that the result could be consistently 

chequered. Thus this expression is 

(3.37) 

where we have introduced A = 2a* so that 

12ga4 + a* - 1 = 0 

to conform with the notation of ref.[6] (not to b e confused with a above). Subtract- 

ing from equation (7.21) of that paper, which gives the number of quadrilations of 

the torus irrespective of questions of chequering, yields a generating function for 

the number of quadrilations of the torus that cannot be chequered: 

E;ochequer = l/12 142 - a”) - E;hequer 

(3.38) 

=g-2gg*+E3-... 

The first term in this expansion corresponds to the single square (fig.3) mentioned 

in the introduction. 

4. The Non-perturbative Physics. 

To obtain the continuum limit of the matrix model we tune the couplings to 

a critical point. In 7, the cosmological constant, is tuned down from large values 

where perturbation theory in the couplings g,,,/-y is valid and surfaces of large area 

(large number of polygons) are heavily suppressed (eqn(2.7)) to a critical point at 
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which the entropy of the surface exactly cancels the exponential suppression and the 

surface area begins to diverge. Equivalently, in physical units the polygons shrink 

to vanishing area. 

The critical behaviour of the spherical contribution to the vacuum energy is 

the same as for hermitian matrix models since, as shown in the previous section, 

the contributions from each model are the same (up to simple resealings) even off 

criticality. Beyond the sphere we expect the physics obtainable from chequered 

surfaces to be the same as that from hermitian matrices because the requirement of 

chequering is only a short distance detail (in physical units). We will show this here 

for the simplest case of quadrilations (only g = gz/y # 0). (A much more thorough 

investigation will be reported in ref.[8]). 0 UT d emonstration will also provide several 

non-trivial checks on the results of the previous section. 

Given the equivalence of the spherical contribution in this model and the model 

of a single hermitian matrix[l], it is clear that a critical point for the sphere will 

also arise here from tuning +y to a point where A = ~(1) becomes non-analytic in 

the couplings. From equation (3.31) we see that this occurs at g = -l/24. At this 

point Q(Z) and more generally a( ) + and T(Z) (e.g. from eqns.(3.23), (3.31)-(3.33)) 

will become non-analytic in z at z = 1. 

Introduce a scaling parameter 6 by defining 

where p is the renormalised cosmological constant, and 6 ---t 0. Substituting the 

above into eqn. (3.31) one obtains 

A= 4 
1+6&i’ (4.2) 

And substituting this into (3.30), yields the spherical contribution to E: 

E. = !?ps/2~s 

which of course is the same behaviour as observed before in refs.[l]. (As in those 

refs. we have dropped the non-universal constant and linear term in p). It is helpful 

to absorb the NZ next to E in eqn.(3.9) by defining the effective action I? = N*E: 
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It is this that must be finite in the continuum limit. Inspecting the above formula 

we see that the bare string coupling therefore scales as 

E = l/N = ~16’1~ (4.3) 

where Y is the finite renommlised string coupling, and thus the spherical contribu- 

tion to the effective action is 

Now let us extract the critical torus behaviour from the previous section. 

Inspecting the expressions (3.36) and (3.31) allows us to check for any further critical 

points that might only show up at the torus level, and to obtain independently of 

the non-perturb&iv= analysis the torus contribution at the k = 2 critical point. 

Thus from (3.31) we see that A is a 2-sheeted function of g if, for generality, we 

consider g to be complex. From (3.36) and the defining quadratic equation for A 

((3.28) with z = 1) we learn in addition that E, has logarithmic singularities in 

A at A = 4 (g = -l/24 uniquely) and A = -4 ( g = l/8 ). From eqn. (3.31) we 

see that the latter point is found on A’s second sheet. Thus El is analytic in g 

and its perturbative expansion converges, for 191 < l/24. El diverges at the critical 

point g = -l/24 which corresponds to diverging surface area, or vanishing size for 

the dynamical triangulations in physical units. Substituting eqn. (4.2) one finds as 

6-+0, 
1 

rl=-%=--ln/~+const. 48 

(where the constant includes a term diverging as In 6). 

It is tempting to associate the non-analytic behaviour at g = l/8 with some 

new phase for strings. This critical point does not exist for hermitian matrix 

models. It appears to have critical behaviour with k = 1 (i.e. critical index of 

string susceptibility -yo = -l/k = -1) because the sphere has no critical behaviour 

at this point. However the critical point is not accessible from perturbation theory in 

small g and therefore does not have a direct interpretation in terms of a continuum 

limit for dynamically triangulated surfaces. We will not consider it further in this 

paper. 
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Introduce the scaling ansatz: 

1 - 262 
x = I- pJ2 

The range of z is p 5 z 5 l/6’; the denominator factor is purely a convenience. At 

the spherical level one obtains from eqns. (3.28), (4.1) and (4.6): 

a0 = 4(1 - 6&) 

ny = 4(1 - 26fi) 

to lowest non-trivial order in the scaling parameter. Using this and eqm(4.1) we 

can now extract the critical behaviour of T and a from the previous section. We 

find that (3.32) does not contribute to order 6 and from (3.33) we obtain 

=4[1 -S(&- -&)I (4.8~~) 

T = 7-0 + C2T2 

=4[1-26(&-&j 

This gives the behaviour of 7 and a to order c* = order Y*. 

Note that the torus contributions (v”) scale in the same way as the spherical 

contributions in (4.8) as indeed they must if we are to derive contributions from all 

orders in genus. This observation justifies our scaling ansata (4.6) since it is easy 

to see that this would not be the case for a different power of 6 in (4.6). Thus in 

general we have scaling as 

a(z) = 4[1- 6a(t)] 

T(Z) = 4[1 - zap(z)] 

One final preliminary is necessary before we derive a non-perturbative differential 

equation (string equation[l]) for p. From eqns. (4.1), (4.3), (4.6), (4.9) and (3.35) 

one finds, as in refs. [l], that only the integral in (3.35) contributes to I?, and 

differentiating with respect to p one derives 

(4.10) 



identifying p as the string susceptibility (with respect to the cosmological constant). 

Using eqns. (4.4), (4.5) and (4.86) one verifies this relation to order Y’. This is a 

non-trivial check on the analysis of the preceding section. 

Writing equations (3.14) in continuum notation 

2r + e = 2g(r(++e) + T(Z) + a”(z)) + a(x) 

(z - 2gT(x))2 = r(z)(l + 2ga(+))(l + 2ga(z-c)) ) 
(4.11) 

substituting (4.9), (4.1) and (4.3), and Taylor expanding r(z+e) and a(~-e) one 

obtains: 

0 = 26(p - a) + ~6a/‘p, + 62(~2~mx - 2aZ + 32) + . . . (4.12) 

0 = 46(a -p) - ~v~~/~cY, + ~*(Y~cx~~ + a2 - 8op - p2 + 62) + . . . (4.13) 

where CY z CY(Z) and similarly p. To order 6 it is clear from these equations that 

p = Q as indeed we had seen perturbatively in (4.8a, b). It is just as clear that 

setting a = p is not enough to solve the equations, in fact we need to determine 

their relative dependence as a power series. Solving (4.12) for a perturb&vely (in 

LW) we obtain 

a = P + ;6112pz + 6(;p,, -P2+;z)+... (4.14) 

and stuffing into (4.13) one finds that all terms of order less than 6a vanish and one 

obtains at order 62: 

which under the trivial resealing v + 2~ is precisely the Painleve I equation for 

2D pure gravity found previously[l]. Solving (4.15) perturbatively in Y, one can 

compare with eqm(4.9) and (4.8b) . One findsa 

and 

2 This analysis is of course the same as that in refs.[l]. 
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The first term in p from (4.8b) determines the sign for PO as PO = 1. The second 

term agrees with the expansion and acts as a non-trivial check on the analysis here 

and in sect. 3. Higher terms are readily obtained from the recurrence relation for 

Pg given above. 

5. Discussion and Conclusions. 

In this paper we have shown that complex matrices A4 can be used to generate 

dynamical polygonations. They differ from those generated by hermitian matrices 

only in the requirement that the triangles in a polygonstion be chequered (as in 

fig.2). The chequering is a direct consequence of having both M and Mt in the 

perturbation theory and an action that respects the invariance 

M-tV MW t (5.1) 

where V and W are unrelated unitary matrices. This invariance is a natural one 

to impose: in higher dimensional analogues of this zero-dimensional field theory it 

plays the role of a gauge invariance. Here it greatly reduces the dynamical degrees 

of freedom to just the eigenvalues of MtM , which is what allows the solution of the 

model. The chequered polygonations arise from associating white triangles with M 

and black triangles with Mt. 

This geometrical interpretation, in terms of chequered polygonations, is enough 

to show that the sphere contribution is related by simple resealings to the sphere 

contribution obtained from the hermitian matrix model, even off criticality. No 

such simple relation exists for the higher genus surfaces, and indeed in sect. 3 we 

derive a generating function for the number of chequered quadrilations of a torus 

and contrast this with the generating function for the number of quadrilations 

irrespective of requirements of chequering. 

Nevertheless intuitively one expects that when tuned to a critical point the 

continuum physics of the model will be insensitive to the short distance effects of 

chequering. We confirmed this, partially, in sect. 5. We will show much more 

rigorously in a later paper[8] that the phy sits of such triangulations is in the same 

universality class as the model of a single hermitian matrix[l]. Several points are 

worth noting however. Firstly, in section 3 we noted that one recovers precisely the 
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Painlevk I equation for 2D pure gravity found previously[l] if one rescales the string 

coupling Y + 2~. Recalling the formula (4.3) we see that the complex matrix model 

behaves in the continuum limit like a 2N x 2N hermitian matrix model with the 

related potential. 

Secondly, while it is true that the physics obtainable from chequered surfaces 

is the same as that from surfaces that are not chequered, it is not true that the 

requirement of chequering is irrelevant in the continuum limit: On a sphere we 

include all the polygon&ions (provided only that the polygons be even sided) 

because, as we showed in sect. 2, all the polygonations can be chequered. The 

torus however has critical behaviour both from quadrilations that can be chequered, 

and quadrilations that can not. Indeed, inspecting equations (3.37) and (3.38) and 

recalling that the continuum limit arises from a2 -+ 2, one sees that they contribute 

in the ratio 1:3. Roughly speaking, there are three times as many quadrilations of 

a torus that cannot be chequered as there are quadrilations that can be chequered 

in the continuum limit. Thus it is important to include only those polygonations 

that can be correctly chequered in order to obtain the correct contribution from the 

higher genus surfaces. 

Thirdly, we noted in sect. 4 the existence of another critical point for the torus. 

This point exists beyond the radius of convergence for perturbation theory in the 

couplings and thus does not necessarily have an interpretation in terms of diverging 

area of triangulated surfaces. Nevertheless it is intriguing because it appears to have 

k = 1 (70 = -1) critical behaviour. Certainly this and its multicritical analogues 

deserve further investigation. 

Finally we note that the framework, in particular the triangulation inter- 

pretation, developed here for complex matrices applies little changed to several 

other generabsations of hermitian matrix models. Thus for example real non- 

symmetric matrices would have a natural “kinetic term” M*M. (2’ stands for 

transpose). It is natural to impose the invariance M -a VTMW where V and W 

are unrelated orthogonal matrices, which then allows the solution of the model. 

From the propagator 

WcgM,T,) - 4,&s 

(cf. eqn(2.6)) and the fact that the invariance enforces the potential to be a trace 
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of a polynomial of MTM we see that one can use the same interpretation as before 

for the propagator and vertices as in figures 4 and 6. Here we are associating an 

incoming arrow with MT and an outgoing arrow with M or what is the same: black 

triangles with MT and white with M. However because the above equation also 

implies: 

VLpMs~) = (M&M,Ts) - +L6 

we see that it is possible to alter the direction of the arrow by twisting the 

propagator. In the triangulation interpretation this corresponds to changing the 

colour of the triangle while flipping over the triangle (plaquette) to display its back! 

Thus, as a little thought confirms, arbritrary real matrices generate dynamical 

chequered polygon&ions in which the polygons should be thought of as having 

two sides (front and back), and their constituent triangles are chequered so that 

in addition the back of the polygon carries the photographic negative colouration. 

Similarly more general versions of quaternionic matrices than quaternionic self-dual 

can be expected to show interpretations in terms of chequering. Intuitively one 

expects from this interpretation, as found with the complex matrix case, that the 

chequering is a short distance detail which will not alter the continuum physics seen 

in the case of unchequered triangulations. Thus we predict this model of arbritrary 

real matrices to be in same universality class reported in ref.[5]. 

Viewing eqn. (5.1) one notes that effectively, since V and W are unrelated, the 

indices on the matrix live in different spaces; there is no reason, from the point of 

view of perturbation theory, why these spaces need be the same dimension. Thus 

we have yet another generalisation to non-square matrices which we discuss for 

the complex matrix case, but may be readily given for real, or quaternionic. Once 

again we have the interpretations displayed by figures 4 and 6. We can represent 

the fact that the matrices indices live in different spaces by colouring the lines of 

the propagator say blue for the left line, looking along the direction of the arrow, 

and red for the right. In terms of the polygon&ion this corresponds to colouring the 

vertices of the polygon similarly. The contractions of the red and blue lines identify 

common vertices in the polygonation, thus we see that the polygonation must be 

built such that only vertices of the same colour meet. Of course this is no further 

restriction than that of chequering, since as we have already noted the indices of 
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a square complex matrix also live in different spaces. Setting the dimension of 

the matrix to be aN x bN, where a and b are independent30f N so that N still 

counts genus, we expect once again that the continuum physics obtainable from 

these polygonations is just that obtained previo&y[l]. 
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Appendix A. Diagonalization. 

We first prove that any N x N complex matrix can be written as 

M = VzWt V, W E U(N) 

I = diag(x,) x, real and 2 0 

We can always find a unitary matrix W such that the substitution 

(A.11 

M-+MWt (A.21 

diagonaliees MtM and places any zero eigenvalues at the bottom of the diagonal 

((-4.4) 1: 

T %MF = Y,L~ . (A.3) 

When a = p the left hand side is a sum of non-negative terms, thus we have for 

some n: 
y-20 fora=l,...,n 

y-=0 and M-,==O fora=n+l,...,N (V7). 
(A-4) 

Let {U(Q)) be the set of vectors such that 

y(a) = M&x- for a = 1,. . . ,n (-4.5) 

3 Other possibilities have recently been considered by Anderson, Myers and 
Periwal[l3]. 
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where zoI = 6 a = 1,. . . , N. These vectors are orthonormal by (A.3). Define 

further N - n orthonormal vectors u(a) a = n + 1,. . . , N to make an orthonormal 

basis, then V,, =~,(a) is a unitary matrix and from (A.4) and (A.5): 

M7a=V7,x, fory,a=l,...,N 

Now doing the inverse transformation to (A.2) proves the assertion q . 

The change of variables to y, V and W as in equation (3.2) is most simply 

performed by borrowing a standard trick from quantum gravity. (This is true for 

the hermitian model also). We write the infinitessimal variation of (A.l) as 

Vt6MW = 6Sx - x6T + 6r (A.61 

where 65 = Vt6V and 6T = WtSW, and then write an invariant integral on the 

tangent space to the fields: 

Const. = 
J 

[d(6M)] exp -tr6Mt6M 

= 
J 

[d(6S)][d(6T)]dN(6z)J exp tr((6Sr - x6T + 6t)(6Sz - x6T + 6~)) 

(A.71 
where the measures for 6M and the anti-hermitian 65, 6T are just the flat measures 

(2.2) and (2.5) respectively. The measure for 6s and 6T is nothing but the tangent 

space version of the Haar measure for V and W . J is the jacobian 

J= 8M c9M 8M 
al:;=’ bT 

Making the linear substitution 

6Sq3 -+ SS,, + 26Tapwq 

2; + x$ 

and rearranging we have 

tr6Mt6M =CCC4 + x~)~S,~~S,~ + 6~,~6T,~ 
(x: - 2;)” 

4 
(x;+xj) }+p: 

Thus performing (A.7) we obtain 

Const. = J IJ $ II:, (x; : $)” 
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which can be rearranged to give .7 and hence, by changing variables from z to y, 

the measure (3.2). 

It is easy to compute the overall multiplicative constant involved in the change 

of variables either by taking some more care in the above analysis or by computing 

20 ( eqn.(2.1)) for each set of coordinates 
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Fig. 1: A polygon divided into triangles, The triangles meet at its centre 

Fig. 2: A portion of a chequered polygonation. A common vertex is circled 

2 ~‘: :~ 2:: :,~ E;i:i:;,, 

: :i,:;;, 
_:~ 

~ 

Fig. 3: A torus quadrilation that cannot be chequered. The attempt puts black 

next to black and white next to white when opposite sides are sewn 

together 



Fig. 4: The propagator (MapMJ6) 

Fig. 5: Feynman diagrams to second order in the quartic interaction 



Fig. 6: A quartic interaction with the quadrilateral superimposed. The incoming 

propagators are associated with black triangles. Outgoing propagators 

with white 
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Fig. 7: The triangle marked with a x cannot be chequered because the triangle 

on the left is already coloured black: and the triangle on the right white. 


